Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials

Article history: Received 9 March 2007 Received in revised form 16 June 2008 Accepted 20 October 2008 Available online 1 November 2008

متن کامل

Testing Low-Degree Polynomials over

We describe an efficient randomized algorithm to test if a given binary function is a low-degree polynomial (that is, a sum of low-degree monomials). For a given integer and a given real , the algorithm queries at !" # points. If is a polynomial of degree at most , the algorithm always accepts, and if the value of has to be modified on at least an fraction of all inputs in order to transform it...

متن کامل

A PTAS for the minimization of polynomials of fixed degree over the simplex - Extended abstract

One may assume w.l.o.g. that p(x) is a homogeneous polynomial (form). Indeed, as observed in [2], if p(x) = ∑d l=0 pl(x), where pl(x) is homogeneous of degree l, then minimizing p(x) over ∆ is equivalent to minimizing the degree d form p(x) := ∑d l=0 pl(x)( ∑n i=1 xi) . Problem (1) is an NP-hard problem, already for forms of degree d = 2, as it contains the maximum stable set problem. Indeed, f...

متن کامل

A PTAS for the minimization of polynomials of fixed degree over the simplex

Abstract. We consider the problem of computing the minimum value pmin taken by a polynomial p(x) of degree d over the standard simplex ∆. This is an NP-hard problem already for degree d = 2. For any integer k ≥ 1, by minimizing p(x) over the set of rational points in ∆ with denominator k, one obtains a hierarchy of upper bounds p∆(k) converging to pmin as k −→ ∞. These upper approximations are ...

متن کامل

Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials

Abstract. This paper proposes and applies a method to sort two-dimensional control points of triangular Bézier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bézier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit repres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2008

ISSN: 0377-0427

DOI: 10.1016/j.cam.2007.04.001